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Here we show how the recent exact determination of the bond percolation threshold for the martini lattice
can be used to provide approximations to the unsolved kagomé and �3,122� lattices. We present two different
methods: one which provides an approximation to the inhomogeneous kagomé and �3,122� bond problems,
and the other which gives estimates of pc for the homogeneous kagomé �0.524 408 8¼� and �3,122�
�0.740 421 2¼� problems that, respectively, agree with numerical results to five and six significant figures.
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Percolation �1,2� has provided some of the most intrigu-
ing and difficult problems in statistical mechanics. Devised
in 1957 by Broadbent and Hammersley �3�, it has served as
the simplest example of a lattice process exhibiting a phase
transition, and its study provides insight into more compli-
cated physical models.

The problem is very simply stated. Given any lattice, such
as either of those shown in Fig. 1, we declare each bond to
be in one of two states: open or closed. If a bond �although
we could just as well consider sites� is open with probability
p and closed with probability 1− p, then clusters of various
sizes will appear, with the average cluster size increasing as
a function of p. In the limit of an infinite lattice there exists
a critical value of this parameter, denoted pc and referred to
as the percolation or critical threshold, where an infinite clus-
ter will appear with probability 1. The value of pc is specific
to each lattice.

While the problem can be easily and precisely defined,
exact solutions for thresholds �or anything else for that mat-
ter� have historically proved elusive, with results being lim-
ited to a small set of lattices. Recent work �4,5� has signifi-
cantly expanded this set, and in fact it was shown in �4� that
an infinite variety of problems are exactly solvable so long as
their basic cells are contained between three vertices and are
stacked in a particular self-dual way. Despite this recent
progress, the most perplexing unsolved problems still re-
main. In particular, the exact site percolation thresholds of
the square and honeycomb �also called hexagonal� lattices,
and the bond threshold of the kagomé lattice, are still un-
known after nearly half a century of research in the field. The
latter problem is one of the subjects of this Communication.

The square, honeycomb, and kagomé problems belong to
an important subset of two-dimensional lattices called the
Archimedean lattices �6�, in which all sites are equivalent.
There are 11 such graphs, and although both site �7� and
bond �8� thresholds have been studied numerically for all of
them, the only exactly solved problems are the bond thresh-

olds of the square, honeycomb, and triangular �9� lattices,
and the site thresholds of the triangular, kagomé, and �3,122�
lattices. Note that finding the site threshold is a completely
different problem from finding the bond threshold, and these
last two site values are known only because of a trivial trans-
formation from the honeycomb bond lattice—a transforma-
tion that does not help us in solving the bond problems.
However, the �3,122� lattice bears enough similarity to the
kagomé that the methods we present here will provide us
with estimates for that bond threshold as well, one of which
agrees with a recent numerical result �8� to its limit of pre-
cision, which is six significant figures.

The bond threshold for the kagomé lattice has previously
been the subject of several conjectures �10–13�. Using a
method that predicted correct critical frontiers for the Potts
model �14� on other lattices, Wu �15� conjectured that it
would also work for the kagomé, and, using the fact that
percolation is the q→1 limit of the Potts model �16�, pro-
posed that pc=0.524 430. . ., the solution of a polynomial we
will encounter below. A few years afterward, and also in the
context of the Potts model, Tsallis �11,17� offered the com-
peting conjecture pc=0.522 372. . ., employing an argument
that also made correct predictions for other lattices. It was
not until much later that both of these propositions were
ruled out numerically �18� though fairly high precision was
required to exclude Wu’s estimate. Tsallis also considered the
�3,122� lattice, and proposed pc�3,122�=0.739 830. . ..

Aside from these various speculative methods, in which
one makes conjectures that must be verified or rejected nu-
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FIG. 1. �a� The kagomé lattice. �b� The �3,122� �or 3-12�
lattice.
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merically, there are some rigorous results for the kagomé and
�3,122� thresholds in the form of bounds on the values of pc.
This work is largely carried out by Wierman and co-workers
�19,20�, using a technique called substitution. The method is
such that continual refinements are possible and the most
current rigorous bounds are �26�

0.522 197 � pc�kagomé� � 0.526 873 �1�

and

0.739 773 � pc�3,122� � 0.741 125. �2�

Various other quantities besides the standard percolation
threshold have also been studied on the kagomé lattice such
as the mixed site-bond threshold �21�, a correlated percola-
tion threshold �22�, and an exact solution for the average
cluster number on a kagomé lattice strip �23�, among others.
As already mentioned, the kagomé Potts model has also re-
ceived, and continues to receive, attention. In addition to the
work already cited, some recent examples include �24�, and
�25� in which the conjectures of Wu and Tsallis are discussed
for various values of q.

Here we show how a recent exact solution on a similar
lattice, the martini lattice �Fig. 2�a��, can be used to provide
precise estimates of the kagomé and �3,122� thresholds.

The starting point of our analysis is the bond threshold for
the martini lattice �Fig. 2�a��. For the general martini genera-
tor of Fig. 2�b�, the method outlined in Ref. �4� gives for the
inhomogeneous critical surface

1 − p1p2r3 − p2p3r1 − p1p3r2 − p1p2r1r2 − p1p3r1r3 − p2p3r2r3

+ p1p2p3r1r2 + p1p2p3r1r3 + p1p2p3r2r3 + p1p2r1r2r3

+ p1p3r1r2r3 + p2p3r1r2r3 − 2p1p2p3r1r2r3 = 0, �3�

which was also reported recently in �10�. Taking ri=1, we
get the following result for the critical surface of the general
honeycomb lattice �9�:

1 − p1p2 − p1p3 − p2p3 + p1p2p3 = 0; �4�

and taking pi=1 we get the following formula for the critical
surface of the general triangular lattice �9�:

1 − r1 − r2 − r3 + r1r2r3 = 0. �5�

For the first approach to the kagomé lattice, we start with
the inhomogeneous double-bond honeycomb lattice, whose
unit cell is shown in Fig. 3�a�. Replacing the bond with prob-

ability pi in the honeycomb lattice with a pair of bonds in
series with probability piti, we find from �4� that the critical
surface is given by

1 − p1p2t1t2 − p2p3t2t3 − p1p3t1t3 + p1p2p3t1t2t3 = 0. �6�

Now consider the progression shown in Fig. 3. Starting
with the double honeycomb lattice �a�, changing every up
star into a triangle gives the martini lattice �b�, and changing
the down stars gives the kagomé lattice �c�. The fact that the
thresholds of the first two stages of this transformation are
now known allows us to make guesses as to the way to reach
the third.

Comparing �6� and �3�, it can be seen that the
transformation

t1t2 → r3 + r1r2�1 − r3� , �7�

t1t3 → r2 + r1r3�1 − r2� , �8�

t2t3 → r1 + r2r3�1 − r1� , �9�

t1t2t3 → r1r2r3 + r1r2�1 − r3� + r2r3�1 − r1� + r1r3�1 − r2�
�10�

effectively turns the double honeycomb critical surface into
the martini critical surface. These substitutions can be inter-
preted in terms of probabilities of connections between ver-
tices on a triangle, i.e., t1t2 is the probability that a particular
pair of vertices are connected on the star, and r3+r1r2�1
−r3� is the probability of the same thing on the triangle. The
same transformations will also change the critical surface of
the honeycomb lattice �4� into that of the triangular �5�—but
note that we are not applying the star-triangle transformation
here. In fact, these manipulations are largely formal, as the
equation �10� is not implied by �7�–�9�. Nevertheless, we
conjecture that if we transform the down star the same way,
we will be on the kagomé critical surface. Using �7�–�10�
with ti replaced by pi and ri by si, we find that �3� becomes

1 − r1s1 − r2s2 − r3s3 − s1r2r3 − s2r1r3 − s3r1r2 − r1s2s3

− r2s1s3 − r3s1s2 + s1r1r2r3 + s2r1r2r3 + s3r1r2r3

+ r1r2s1s3 + r1r3s1s2 + r2r3s1s2 + r2r3s1s3 + r1r2s2s3

+ r2s1s2s3 + r3s1s2s3 + r1r3s2s3 + r1s1s2s3 − r1r2r3s1s3

− r1r2r3s2s3 − r1r2r3s1s2 − r1r2s1s2s3 − r1r3s1s2s3

− r2r3s1s2s3 + r1r2r3s1s2s3 = 0. �11�

FIG. 2. �a� The martini lattice. �b� The assignment of probabili-
ties for the inhomogeneous threshold.

FIG. 3. The transformation from the �a� double honeycomb, to
the �b� martini, to the �c� kagomé lattice.
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Setting all probabilities equal gives the condition

1 − 3p2 − 6p3 + 12p4 − 6p5 + p6 = 0, �12�

with solution in �0,1� pc=0.524 429 717 5. . .. This result
turns out to be identical to the conjecture made several years
ago by Wu �15� by different means. Subsequently, this value
was found to be high numerically, but by only 3�10−5 �18�.
Note that �11� is a plausible form for the kagomé threshold:
all the bonds are equivalent, setting any one probability to 0
gives the correct threshold for the A lattice �the lattice that
results when p1 is set to 1 in Fig. 2�b��, and setting all
pi=1 reduces the expression to the triangular critical surface.
It is difficult to imagine any other form that satisfies these
conditions and remains linear in the probabilities, suggesting
that the true general formula for the kagomé lattice will not
be linear in this way.

The same procedure can also be used to find an approxi-
mate solution to the �3,122� lattice. We start with the triple-
bond honeycomb lattice, and transform the stars into tri-
angles in the same manner as before �Fig. 4�. There are nine
probabilities in this case and the resulting inhomogeneous
condition is

1 − m1m2�r3 + r1r2 − r1r2r3��s3 + s1s2 − s1s2s3� − m1m3�r2

+ r1r3 − r1r2r3��s2 + s1s3 − s1s2s3� − m2m3�r1 + r2r3

− r1r2r3��s1 + s2s3 − s1s2s3� + m1m2m3�r1r2 + r1r3 + r2r3

− 2r1r2r3��s1s2 + s1s3 + s2s3 − 2s1s2s3� = 0. �13�

Setting all mi=1 gives �11� �in factored form�, and setting all
mi=m and ri=si=r gives the equation for an inhomogeneous
�3,122� lattice with all triangle bonds having probability r
and all linking bonds having probability m,

1 − 3m2�r + r2 − r3�2 + m3�3r2 − 2r3�2 = 0. �14�

Finally, letting r=m= p gives the equation for the homoge-
neous �3,122� lattice

�1 + p − 2p3 + p4��1 − p + p2 + p3 − 7p4 + 4p5� = 0, �15�

with solution on �0,1� pc=0.740 423 317 9. . ., well within the
bounds of �2�. According to the numerical analysis of Parvi-
ainen �8�, pc�3,122�=0.740 421 95�80�. Our result is high by
less than two standard deviations. Yet, we can get even better
agreement with both of these results by taking a somewhat
different route.

In our second approach, we also compare the critical
double honeycomb with the critical martini lattice, but
we consider all bonds equivalent, in which case the

double honeycomb threshold is p0=�1−2 sin � /18 by �6�.
Now, consider the martini lattice with p1= p2= p3= p, and
r1=r2=r3=r. Equation �3� implies that the critical surface is

1 − 3p2�r + r2 − r3� + p3�3r2 − 2r3� = 0, �16�

and taking p= p0, we find that the critical value for r is

r = 0.524 408 765 297 69 . . . . �17�

That is, when one star with bond probabilities p0 is replaced
by a triangle with probabilities r, the system remains at a
critical point �even though local correlations will necessarily
be different because this is not a fixed point of the star-
triangle transformation�. If we conjecture that the system still
remains at a critical point when we make the same replace-
ment for the other triangle, then �17� is an estimate for the pc
of the kagomé lattice. In fact, �17� is very close to the nu-
merical result, pc=0.524 405 3�3� �18�, although outside the
given error bars.

It turns out that �17� is numerically identical to the value
conjectured by Hori and Kitahara, which, however is only
available as a conference abstract without a derivation �13�.
Evidently, we have effectively duplicated the derivation of
these authors. However, we can go further and use our argu-
ment to estimate the threshold for the �3,122� lattice. Again
we start off with the double honeycomb lattice at the uniform
threshold of p0, and compare to a critical martini lattice with
p= p0

�r �Fig. 5�a��. The argument works as in the kagomé
case, with the transformation to the �3,122� lattice shown in
Fig. 5�b�. The solution to �16� yields

r = 0.740 421 178 583 74 . . . . �18�

This result is within the error bars of �8� and falls within the
rigorous bounds of �19�, which raises the possibility that the
result is exact. Clearly, more precise numerical work for both
lattices is called for.

We can generalize our argument above for the inhomoge-
neous �3,122� lattice with two probabilities m and r. The
critical surface is determined by �16� with p= p0

�m. When
m=1, this gives the kagomé estimate �17�; when m=r it
gives the homogeneous estimate �18�; and when r=1 it gives
the exact honeycomb result m= p0

2. The formula �16� �with
p= p0

�m� can be compared with �14�, which though math-
ematically quite different, gives very similar numerical solu-

FIG. 4. Progression from the triple-bond honeycomb to the
�3,122� lattice.

FIG. 5. The substitution of probabilities for the second �3,122�
lattice threshold estimate.
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tions. Finally, we note one last relation: if we require that the
second terms of the two estimates �14� and �16� �which rep-
resents two-point correlations� be the same, we get the
simple condition

p0
2/m = r + r2 − r3, �19�

which turns out to be identical to Tsallis’ conjecture for this
system. As mentioned above, however, the predictions of this
formula are much farther from the numerical measurements
than the predictions of �14� and �16�.

In conclusion, we have shown that the results for the mar-
tini and honeycomb lattices can be used to make precise

estimates of bond percolation on the kagomé and �3,122�
lattices, both long-standing problems in percolation theory.
For the kagome lattice, we have reproduced the conjectures
of both Wu and of Hori and Kitahara, while for the �3,122�
lattice we have found apparently very precise estimates. Per-
haps these methods can point the way to finding rigorous
thresholds for these lattices and analyzing other unsolved
lattices in percolation.
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